高疏诧异的看了眼裹的结结实实的余少,又看到了余少,他以为对方又要死皮赖脸的凑过来,谁知道对方非但没有跟过来,在他看过去的时候,又猛然的后退了一步。
可是要说对方不要过来吧,可是却就站在不远不近的地方看着他们,说看着也不恰当,对方左看右看就是不看他们,当他们完全不注意他的时候,对方才又飞快的看他们一眼,还以为他们看不到……
殊不知这样鬼鬼祟祟的样子,十分惹人注目。
所以对方到底想做什么?又想什么鬼主意吗?
在对方又一次看过来的时候,高疏和对方对视了,发现了对方眼底的惊慌……
惊慌?他不是天不怕地不怕的吗?还会惊慌?
而且他没有必要怕他啊?
不对。
高疏看了眼身边的洛叶,早晨他敲门,洛叶完全没有反应,直到傍晚才懒洋洋的爬起来,眼睛上挂着两个明显的黑眼圈,他这是怕洛叶。
想到这,高疏又看了眼余少,发现他眼底也是青黑一片,脸色青白,穿那么厚似乎还在抖,昨天还好好的,一夜之间就病的那么重了。
想到这,他接着吃饭,而站在余少身边的水玥儿使劲掐了他一把,脸上还带着笑,用低不可闻的声音道,“你不想活了?再看下去,小心挖了你的眼睛。”
余少心里苦,他心道我也不想啊,但是我能有什么办法。还有你能不能不要靠近我!
我和你不熟!可是在水玥儿露出了真面后,他实在无法像之前一样呼来喝去,甚至想想,还觉得犹如大梦一场,而且觉得自己能活到现在,真的是幸运,不对!见识到了洛叶的威风后,他觉得昨天打翻了那个小碟后,他还活着才不可思议。
洛叶喝完了海鲜粥,揉了揉头,对余少那视而不见,“我们出去走走。”
“去哪?”
“迷宫。”
度假区有个小型的迷宫,给小孩子玩的,灌木组成的,洛叶走进去,刚好把她视线挡住,而高疏可以看到居高临下的看到整个迷宫的布局,这种植物样式的迷宫在现在已经十分普遍了。
洛叶道,“你对迷宫知道多少?”
高疏,“什么方面的?”
“什么方面都可以。”
“神话算吗?希腊神话中名匠代达罗斯为克里特岛的国王米诺斯所设计,建造于克诺索斯。这座迷宫用来囚禁他的儿子——半人半牛怪物的弥诺陶洛斯。代达罗斯巧妙地建造这座迷宫,耗尽了他所有的心血,使得在完成后他本人几乎无法从中逃脱,这应该是比较著名的神话故事。”
这是最为著名的迷宫神话故事,后来人类英雄在雅典公主的帮助下杀死了弥诺陶洛斯,成功走出了这座几乎不可能走出来的迷宫。
“现在比较著名的迷宫,有意大利皮萨尼别墅花园迷宫,澳大利亚阿什科姆迷宫,法国雷尼亚克迷宫,朗利特树篱迷宫。”
高疏本人对迷宫没有多少了解,能说出来,还是归功于他的书足够多,法国的雷尼亚克迷宫应该是世界上最大的植物迷宫,而每年的迷宫图案都不一样,每年都会有迷宫爱好者前往去挑战,高疏曾经看过一条相关的新闻,所以记住了。
洛叶道,“那你说,世界上真的有永远走不出来的迷宫吗?”
“从理论上来说,没有。”高疏谨慎的道,“迷宫有入口,也有出口,这是基本规则,只要没有时间限制,没有生存上的顾虑,是可以从里面走出来的。”
他奇怪道,“你想去走一走迷宫吗?”
“不,我喜欢设计迷宫,而不是喜欢走迷宫。”洛叶摇了摇头,“我在c大听了一位教授的讲座,让人再之前产生的一点灵感再次冒了出来。”
“可是一直没有时间去想,直到昨天晚上……我忽然有了初步的构架。”
高疏谨慎的思考了下她透露出来的内容,就听洛叶道,“知道傅里叶变换吗?”
洛叶道,“数学和物理的维度概念截然不同,在数学上,达芬奇曾经写过一句话,绘画科学开始于点,然后是线,第三个出现是是面,第四个面覆盖着的立体,在他的层次结构中,点是零维的,线是一维的,面是两维的,而空间是三维的,这可以认为是数学上的维度概念。”
这可以用坐标来体现这个概念,立体维度的坐标可以用(x,y,z)来表示,再多的变量,在z后面增加变量就好了,就像是洛叶之前说过的lie理论,高维度数学空间对数学家来说十分的司空见惯,在有限群中,甚至把“怪兽群”放到一个196883维度数学空间来进行分析考察,之前的超立方体就是纯粹的数学维度。
“而在物理学上,维度概念截然不同,物理学家在四维时空和弦理论基础上建立了他们的维度理论,根据爱因斯坦的理论,物理学上的第四维是时间维,时间和空间一起构成了一个四维连续统,我们就生活在四维空间。”